Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechniques ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38425192

RESUMEN

Characterizing swimming behavior can provide a holistic assessment of the health, physiology and ecology of microfaunal species when done in conjunction with measuring other biological parameters. However, tracking and quantifying microfauna swimming behavior using existing automated tools is often difficult due to the animals' small size or transparency, or because of the high cost, expertise, or labor needed for the analysis. To address these issues, we created a cost-effective, user-friendly protocol for behavior analysis that employs the free software packages HitFilm and ToxTrac along with the R package 'trajr' and used the method to quantify the behavior of rotifers. This protocol can be used for other microfaunal species for which investigators may face similar issues in obtaining measurements of swimming behavior.

2.
Invertebr Reprod Dev ; 59(1): 5-10, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25642019

RESUMEN

Comparative biogerontology has much to contribute to the study of aging. A broad range of aging rates has evolved to meet environmental challenges, and understanding these adaptations can produce valuable insights into aging. The supra Phylum Lophotrochozoa is particularly understudied and has several groups that have intriguing patterns of aging. Members of the lophotrochozoan phylum Rotifera are particularly useful for aging studies because cohort life tables can be conducted with them easily, and biochemical and genomic tools are available for examining aging mechanisms. This paper reviews a variety of caloric restriction regimens, small molecule inhibitors, and dietary supplements that extend rotifer lifespan, as well as important interactions between caloric restriction and genotype, antioxidant supplements, and TOR and JNK pathways, and the use of RNAi to identify key genes involved in modulating the aging response. Examples of how rapamycin and JNK inhibitor exposure keeps mortality rates low during the reproductive phase of the life cycle are presented, and the ease of conducting life table experiments to screen natural products from red algae for life extending effects is illustrated. Finally, experimental evolution to produce longer-lived rotifer individuals is demonstrated, and future directions to determine the genetic basis of aging are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA